Advertisements
Advertisements
प्रश्न
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
उत्तर
Given that AB = BC = x
∴ AC = `sqrt(AB^2+BC^2) = sqrt(x^2 + x^2) = xsqrt2`
tan 45° = `"AB"/"BC" = x/x =1`
APPEARS IN
संबंधित प्रश्न
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
`(2 tan 30°)/(1+tan^2 30°)` = ______.
sin 2A = 2 sin A is true when A = ______.
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
secθ . Cot θ= cosecθ ; write true or false
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10