English

ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45° - Mathematics

Advertisements
Advertisements

Question

ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°

Sum

Solution

Given that AB = BC = x

∴ AC = `sqrt(AB^2+BC^2) = sqrt(x^2 + x^2) = xsqrt2`

tan 45°  = `"AB"/"BC" = x/x =1`

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [Page 291]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 5.3 | Page 291

RELATED QUESTIONS

Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


`(2 tan 30°)/(1+tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


Show that tan 48° tan 23° tan 42° tan 67° = 1


Evaluate the following :

`tan 35^@/cot 55^@  + cot 78^@/tan 12^@  -1`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


If sin x = cos y, then x + y = 45° ; write true of false


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


secθ . Cot θ= cosecθ ; write true or false


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Prove that : cos60° . cos30° - sin60° . sin30° = 0


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


Find the value of x in the following: tan x = sin45° cos45° + sin30°


Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°


Find the value of the following:

sin2 30° – 2 cos3 60° + 3 tan4 45°


`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×