Advertisements
Advertisements
Question
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Solution
Given that AB = BC = x
∴ AC = `sqrt(AB^2+BC^2) = sqrt(x^2 + x^2) = xsqrt2`
tan 45° = `"AB"/"BC" = x/x =1`
APPEARS IN
RELATED QUESTIONS
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
`(2 tan 30°)/(1+tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
If sin x = cos y, then x + y = 45° ; write true of false
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
secθ . Cot θ= cosecθ ; write true or false
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.