English

ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45° - Mathematics

Advertisements
Advertisements

Question

ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°

Sum

Solution

Given that AB = BC = x

∴ AC = `sqrt(AB^2+BC^2) = sqrt(x^2 + x^2) = xsqrt2`

cos 45° =`"BC"/"AC" = x/(xsqrt2) = 1/sqrt2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [Page 291]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 5.2 | Page 291

RELATED QUESTIONS

Find the value of θ in each of the following :

(i) 2 sin 2θ = √3      (ii) 2 cos 3θ = 1


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°


Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`


secθ . Cot θ= cosecθ ; write true or false


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


Find the value of the following:

sin2 30° – 2 cos3 60° + 3 tan4 45°


Verify cos3A = 4cos3A – 3cosA, when A = 30°


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×