Advertisements
Advertisements
Question
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
Solution
Given A = 30°
sin 2A = sin 2(30°) = sin60° = `(sqrt3)/(2)`
2sin A cos A = 2sin 30° cos 30°
= `2(1/2)(sqrt3/2)`
= `(sqrt3)/(2)`
`(2 tan"A")/(1 + tan^2 30°) = (2tan 30°)/(1 + tan^2 30°)`
= `(2(1/sqrt3))/(1 + (1/sqrt3)^2`
= `(2/sqrt3)/(4/(3)`
= `(2)/(sqrt3) xx (3)/(4)`
= `(sqrt3)/(2)`
∴ sin 2A = 2sin A cos A = `(2tan"A")/(1 + tan^2 "A")`
APPEARS IN
RELATED QUESTIONS
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Evaluate tan 35° tan 40° tan 50° tan 55°
Prove that:
sin 60° = 2 sin 30° cos 30°
If sin x = cos x and x is acute, state the value of x
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: tan 30° tan 60°
find the value of: sin2 30° + cos2 30°+ cot2 45°
find the value of: cos2 60° + sec2 30° + tan2 45°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: `2sin x/(2)` = 1
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`