Advertisements
Advertisements
Question
Prove that:
sin 60° = 2 sin 30° cos 30°
Solution
LHS = sin 60° = `(sqrt3)/(2)`
RHS = 2 sin 60° cos 60° = `2 xx (sqrt3)/(2) xx (1)/(2) = (sqrt3)/(2)`
LHS = RHS
APPEARS IN
RELATED QUESTIONS
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
`(2 tan 30°)/(1+tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Prove that
sin (70° + θ) − cos (20° − θ) = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
If sin x = cos y, then x + y = 45° ; write true of false
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Find the value of x in the following: `2sin x/(2)` = 1
Verify the following equalities:
1 + tan2 30° = sec2 30°
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If sin 30° = x and cos 60° = y, then x2 + y2 is
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10