Advertisements
Advertisements
Question
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Solution
Given that `(sin 21^@)/(cos 69^@)`
Since `sin (90 - theta) = cos theta`
`=> (sin 21)/(cos 69) = sin(90 - 69)/cos 69`
`=> sin 21/cos 69 = cos 69/cos 69`
`=> sin 21/cos 69 = 1`
APPEARS IN
RELATED QUESTIONS
Evaluate the following :
`tan 10^@/cot 80^@`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If sin x = cos x and x is acute, state the value of x
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is