Advertisements
Advertisements
Question
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Solution
LHS = cos 54° cos36° - sin 54° sin 36°
= cos (90° - 36°) cos 36° - sin (90° - 360°) sin 36°
= sin 36° cos 36° - cos 36° sin 36°
= 0
= RHS
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate tan 35° tan 40° tan 50° tan 55°
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cos2 60° + sin2 30°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Without using tables, evaluate the following: tan230° + tan260° + tan245°
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B