Advertisements
Advertisements
Question
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Solution
`(2)/(tan30°) = 2/(1/sqrt3)= 2sqrt3 = 2 xx 1.732 = 3 .46`
APPEARS IN
RELATED QUESTIONS
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
If sin x = cos x and x is acute, state the value of x
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
find the value of: sin2 30° + cos2 30°+ cot2 45°
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If sin(A +B) = 1(A -B) = 1, find A and B.
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Evaluate: sin2 60° + 2tan 45° – cos2 30°.