Advertisements
Advertisements
Question
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Solution
Given that A = 30°
LHS = 4 cos A cos (60° – A ). cos (60° + A)
= 4 cos 30° cos (60° – 30°). cos (60° + 30°)
= 4 cos 30° cos 30° cos 90°
= `4(sqrt3/2)(sqrt3/2) (0)`
= 0
RHS = cos 3A
= cos3(30°)
= cos 90°
=0
LHS = RHS
APPEARS IN
RELATED QUESTIONS
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
find the value of: tan 30° tan 60°
find the value of: cos2 60° + sec2 30° + tan2 45°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Find the value of x in the following: `2sin x/(2)` = 1
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Verify the following equalities:
sin2 60° + cos2 60° = 1
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Verify cos3A = 4cos3A – 3cosA, when A = 30°
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.