English

If A = 30°; show that: 4 cos A cos (60° - A). cos (60° + A) = cos 3A - Mathematics

Advertisements
Advertisements

Question

If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A

Sum

Solution

Given that A = 30°

LHS  = 4 cos A cos (60° – A ). cos (60° + A)

= 4 cos 30° cos (60° – 30°). cos (60° + 30°)

= 4 cos 30° cos 30° cos 90°

= `4(sqrt3/2)(sqrt3/2) (0)`

= 0

RHS = cos 3A

= cos3(30°)

= cos 90°

=0

LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [Page 293]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 4.6 | Page 293

RELATED QUESTIONS

If x = 30°, verify that

(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`

(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Show that tan 48° tan 23° tan 42° tan 67° = 1


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


find the value of: tan 30° tan 60°


find the value of: cos2 60° + sec2 30° + tan2 45°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°


prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Find the value of x in the following: `2sin  x/(2)` = 1


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Verify the following equalities:

sin2 60° + cos2 60° = 1


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Verify cos3A = 4cos3A – 3cosA, when A = 30°


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×