मराठी

If A = 30°; show that: 4 cos A cos (60° - A). cos (60° + A) = cos 3A - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A

बेरीज

उत्तर

Given that A = 30°

LHS  = 4 cos A cos (60° – A ). cos (60° + A)

= 4 cos 30° cos (60° – 30°). cos (60° + 30°)

= 4 cos 30° cos 30° cos 90°

= `4(sqrt3/2)(sqrt3/2) (0)`

= 0

RHS = cos 3A

= cos3(30°)

= cos 90°

=0

LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 4.6 | पृष्ठ २९३

संबंधित प्रश्‍न

Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Prove that

tan (55° − θ) − cot (35° + θ) = 0


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


find the value of: cos2 60° + sin2 30°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


For any angle θ, state the value of: sin2 θ + cos2 θ


Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B


If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Find the value of x in the following: tan x = sin45° cos45° + sin30°


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×