Advertisements
Advertisements
प्रश्न
For any angle θ, state the value of: sin2 θ + cos2 θ
उत्तर
sin2 θ =cos2 θ
= sin2 θ + 1 – sin2θ = 1
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
sin 2A = 2 sin A is true when A = ______.
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If sin x = cos y, then x + y = 45° ; write true of false
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cos2 60° + sin2 30°
find the value of: cos2 60° + sec2 30° + tan2 45°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Find the value of x in the following: 2 sin3x = `sqrt(3)`
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`