English

For any angle θ, state the value of: sin2 θ + cos2 θ - Mathematics

Advertisements
Advertisements

Question

For any angle θ, state the value of: sin2 θ + cos2 θ

Sum

Solution

sin2 θ  =cos2 θ

= sin2 θ + 1 – sin2θ = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [Page 291]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 8.3 | Page 291

RELATED QUESTIONS

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


find the value of: sin 30° cos 30°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°


Find the value of x in the following: `2sin  x/(2)` = 1


Find the value of x in the following: tan x = sin45° cos45° + sin30°


Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


Verify the following equalities:

1 + tan2 30° = sec2 30°


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×