Advertisements
Advertisements
Question
For any angle θ, state the value of: sin2 θ + cos2 θ
Solution
sin2 θ =cos2 θ
= sin2 θ + 1 – sin2θ = 1
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
find the value of: sin 30° cos 30°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Find the value of x in the following: `2sin x/(2)` = 1
Find the value of x in the following: tan x = sin45° cos45° + sin30°
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10
Evaluate: sin2 60° + 2tan 45° – cos2 30°.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`