Advertisements
Advertisements
Question
Evaluate: sin2 60° + 2tan 45° – cos2 30°.
Solution
sin2 60° + 2tan 45° – cos2 30°
= `(sqrt(3)/2)^2 + 2(1) - (sqrt(3)/2)^2`
= `3/4 + 2 - 3/4`
= 2
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`