Advertisements
Advertisements
Question
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
Solution
2tan2 45° + cos2 30° − sin2 60°
= `2(1)^2 + ((sqrt3)/2)^2 - ((sqrt3)/2)^2`
= `2(1)^2 + (sqrt3/2)^2 - ((sqrt3)/2)^2`
= `2+3/4 - 3/4`
= 2
APPEARS IN
RELATED QUESTIONS
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Verify the following equalities:
1 + tan2 30° = sec2 30°
If sin 30° = x and cos 60° = y, then x2 + y2 is
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).