English

prove that: cos (2 x 30°) = 1 – tan 2 30 ° 1 + tan 2 30 ° - Mathematics

Advertisements
Advertisements

Question

prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`

Sum

Solution

RHS,

`(1 – tan^2 30°)/(1 +tan^2 30°) = (1–(1)/(3))/(1+(1)/(3)) = (1)/(2)`

LHS,

cos (2 x 30°) = `cos 60° = (1)/(2)`

LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [Page 291]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 4.2 | Page 291

RELATED QUESTIONS

If x = 30°, verify that

(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`

(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


Prove that:

cos2 30°  - sin2 30° = cos 60°


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Prove that : sec245° - tan245° = 1


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×