Advertisements
Advertisements
Question
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
Solution
RHS,
`(1 – tan^2 30°)/(1 +tan^2 30°) = (1–(1)/(3))/(1+(1)/(3)) = (1)/(2)`
LHS,
cos (2 x 30°) = `cos 60° = (1)/(2)`
LHS = RHS
APPEARS IN
RELATED QUESTIONS
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Prove that:
cos2 30° - sin2 30° = cos 60°
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Prove that : sec245° - tan245° = 1
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`