Advertisements
Advertisements
Question
Prove that : sec245° - tan245° = 1
Solution
L.H.S. = sec245° - tan245°
= `(sqrt(2))^2 - (1)^2`
= 2 - 1
= 1
= R.H.S.
APPEARS IN
RELATED QUESTIONS
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
sin 2A = 2 sin A is true when A = ______.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate cos 48° − sin 42°
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that:
sin 60° = 2 sin 30° cos 30°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`