English

Prove that : sec245° - tan245° = 1 - Mathematics

Advertisements
Advertisements

Question

Prove that : sec245° - tan245° = 1

Sum

Solution

L.H.S. = sec245° - tan245° 
= `(sqrt(2))^2 - (1)^2`
= 2 - 1
= 1
= R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 3.3

RELATED QUESTIONS

If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


Evaluate the following:

2tan2 45° + cos2 30° − sin2 60°


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


sin 2A = 2 sin A is true when A = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


Evaluate cos 48° − sin 42°


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Prove that:
sin 60° = 2 sin 30° cos 30°


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Prove that : cos60° . cos30° - sin60° . sin30° = 0


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×