Advertisements
Advertisements
Question
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Solution
We know `sec(90^@ - theta) = cosec theta` and `cos (90^2 - theta) = sin theta`
`cos 78^@ + sec 78^@ = cos(90^@ - 12^@) + sec (90^@ - 12^@)`
`= sin 12^@ + cosec 12^@`
Thus the desired expression is `sin 12^@ + cosec 12^@`
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
Prove that:
cos2 30° - sin2 30° = cos 60°
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°