English

Prove that: cos2 30°  - sin2 30° = cos 60° - Mathematics

Advertisements
Advertisements

Question

Prove that:

cos2 30°  - sin2 30° = cos 60°

Sum

Solution

`(sqrt3/2)^2 - (1/2)^2 = 3/4 - 1/4 = 2/4 = 1/2 = cos60°`

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [Page 291]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 3.4 | Page 291

RELATED QUESTIONS

Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate cos 48° − sin 42°


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Evaluate tan 35° tan 40° tan 50° tan 55°


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


find the value of: sin2 30° + cos2 30°+ cot2 45°


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


Find the value of x in the following:  2 sin3x = `sqrt(3)`


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`


If sin(A +B) = 1(A -B) = 1, find A and B.


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


If sin 30° = x and cos 60° = y, then x2 + y2 is


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×