मराठी

Prove that: cos2 30°  - sin2 30° = cos 60° - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

cos2 30°  - sin2 30° = cos 60°

बेरीज

उत्तर

`(sqrt3/2)^2 - (1/2)^2 = 3/4 - 1/4 = 2/4 = 1/2 = cos60°`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 3.4 | पृष्ठ २९१

संबंधित प्रश्‍न

An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


Evaluate the following:

2tan2 45° + cos2 30° − sin2 60°


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


Find the value of:

tan2 30° + tan2 45° + tan2 60°


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


Prove that:

cosec2 45°  - cot2 45°  = 1


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


secθ . Cot θ= cosecθ ; write true or false


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Prove that : sec245° - tan245° = 1


Find the value of x in the following: `2sin  x/(2)` = 1


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.


Verify the following equalities:

1 + tan2 30° = sec2 30°


Verify the following equalities:

sin 30° cos 60° + cos 30° sin 60° = sin 90°


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×