Advertisements
Advertisements
प्रश्न
Prove that:
cos2 30° - sin2 30° = cos 60°
उत्तर
`(sqrt3/2)^2 - (1/2)^2 = 3/4 - 1/4 = 2/4 = 1/2 = cos60°`
APPEARS IN
संबंधित प्रश्न
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cosec2 45° - cot2 45° = 1
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
secθ . Cot θ= cosecθ ; write true or false
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Prove that : sec245° - tan245° = 1
Find the value of x in the following: `2sin x/(2)` = 1
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to