Advertisements
Advertisements
प्रश्न
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
उत्तर
2tan2 45° + cos2 30° − sin2 60°
= `2(1)^2 + ((sqrt3)/2)^2 - ((sqrt3)/2)^2`
= `2(1)^2 + (sqrt3/2)^2 - ((sqrt3)/2)^2`
= `2+3/4 - 3/4`
= 2
APPEARS IN
संबंधित प्रश्न
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate cos 48° − sin 42°
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
find the value of: tan 30° tan 60°
find the value of: cos2 60° + sin2 30°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If 2 sin 2θ = `sqrt(3)` then the value of θ is