Advertisements
Advertisements
प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following:
sin 60° cos 30° + cos 60° sin 30°
उत्तर १
sin 60° cos 30° + cos 60° sin 30°
= `\frac{\sqrt{3}}{2}\times \frac{\sqrt{3}}{2}+\frac{1}{2}\times\frac{1}{2}`
= `\frac{3}{4}+\frac{1}{4}`
= 1
उत्तर २
sin 60° cos 30° + cos 60° sin 30° ...(i)
By trigonometric ratios we have,
`sin 60° = sqrt3/2 sin 30°`
= `1/2`
`cos 30° = sqrt3/2 cos 60°`
= `1/2`
Substituting above values in (i), we get
`sqrt3/2 . sqrt3/2 + 1/2 . 1/2`
= `3/4 + 1/4`
= `4/4`
= 1
संबंधित प्रश्न
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
find the value of: sin 30° cos 30°
find the value of: cos2 60° + sin2 30°
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Verify cos3A = 4cos3A – 3cosA, when A = 30°
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to