मराठी

If sin(A - B) = 1 2 and cos(A + B) = 1 2 , find A and B. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.

बेरीज

उत्तर

sin(A - B) = `(1)/(2)`

⇒ sin(A - B) = sin30°
⇒ A - B = 30° ......(i)
cos(A + B) = `(1)/(2)`
⇒ cos(A + B) = cos60°
⇒ A + B = 60° ........(ii)
Adding (i) and (ii)
A - B + A + B = 30° + 60°
⇒ 2A = 90°
⇒ A = 45°
Substituting value of A in (i)
A - B = 30°
45° - B = 30°
B = 15°
Therefore,
A = 45° and B = 15°.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 25

संबंधित प्रश्‍न

Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate the following :

cosec 31° − sec 59°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°


Prove that:
sin 60° = 2 sin 30° cos 30°


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ


secθ . Cot θ= cosecθ ; write true or false


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


If sin(A +B) = 1(A -B) = 1, find A and B.


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×