Advertisements
Advertisements
प्रश्न
Prove that:
sin 60° = 2 sin 30° cos 30°
उत्तर
LHS = sin 60° = `(sqrt3)/(2)`
RHS = 2 sin 60° cos 60° = `2 xx (sqrt3)/(2) xx (1)/(2) = (sqrt3)/(2)`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Evaluate tan 35° tan 40° tan 50° tan 55°
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Prove that:
cosec2 45° - cot2 45° = 1
Prove that:
cos2 30° - sin2 30° = cos 60°
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Find the value of x in the following: `2sin x/(2)` = 1
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
Verify the following equalities:
sin2 60° + cos2 60° = 1
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`