Advertisements
Advertisements
प्रश्न
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
उत्तर
sec A = cosec A
cos A = sin A
cos2A = sin2A
cos2 A = 1 – cos2A
2cos2A = 1
cos A = `(1)/(sqrt2)`
A = 45°
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If sin x = cos y, then x + y = 45° ; write true of false
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If sin(A +B) = 1(A -B) = 1, find A and B.
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.