Advertisements
Advertisements
प्रश्न
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
उत्तर
`(2)/(tan30°) = 2/(1/sqrt3)= 2sqrt3 = 2 xx 1.732 = 3 .46`
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
find the value of: sin 30° cos 30°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
secθ . Cot θ= cosecθ ; write true or false
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of 5 sin2 90° – 2 cos2 0° is ______.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`