मराठी

If A = 30°; show that: (sin A - cos A)2 = 1 - sin 2A - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A

बेरीज

उत्तर

Given that A = 30°

LHS = `(sin "A" – cos "A")^2`

=`(sin 30° – cos 30°)^2`

=`((1)/(2) – (sqrt3)/(2))^2`

= `(1)/(4) + (3)/(4) – (sqrt3)/(2)`

= `1  – (sqrt3)/(2)`

= `2 – (sqrt3)/(2)`

RHS = 1 – sin 2A

= 1 – sin 2(30°)

= 1 – sin60°

= `1 – (sqrt3)/(2)`

= `(2 – sqrt3)/(2)`

LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 4.2 | पृष्ठ २९३

संबंधित प्रश्‍न

Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


`(2 tan 30°)/(1+tan^2 30°)` = ______.


sin 2A = 2 sin A is true when A = ______.


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°


If sin x = cos y, then x + y = 45° ; write true of false


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


find the value of: tan 30° tan 60°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of  `(2)/(tan 30°)`


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Prove that : cos60° . cos30° - sin60° . sin30° = 0


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×