Advertisements
Advertisements
प्रश्न
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
उत्तर
Given that A = 30°
LHS = `(sin "A" – cos "A")^2`
=`(sin 30° – cos 30°)^2`
=`((1)/(2) – (sqrt3)/(2))^2`
= `(1)/(4) + (3)/(4) – (sqrt3)/(2)`
= `1 – (sqrt3)/(2)`
= `2 – (sqrt3)/(2)`
RHS = 1 – sin 2A
= 1 – sin 2(30°)
= 1 – sin60°
= `1 – (sqrt3)/(2)`
= `(2 – sqrt3)/(2)`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
`(2 tan 30°)/(1+tan^2 30°)` = ______.
sin 2A = 2 sin A is true when A = ______.
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
If sin x = cos y, then x + y = 45° ; write true of false
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
find the value of: tan 30° tan 60°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.