Advertisements
Advertisements
प्रश्न
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
उत्तर
8 sin 2x cos 4x sin 6x = 8 sin 2(15°) × cos 4(15°) × sin(6 × 15°)
= 8 sin 30° × cos 60° × sin 90°
= `8 xx 1/2 xx 1/2 xx 1`
= 2
APPEARS IN
संबंधित प्रश्न
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
If sin x = cos y, then x + y = 45° ; write true of false
secθ . Cot θ= cosecθ ; write true or false
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°