Advertisements
Advertisements
Question
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
Solution
8 sin 2x cos 4x sin 6x = 8 sin 2(15°) × cos 4(15°) × sin(6 × 15°)
= 8 sin 30° × cos 60° × sin 90°
= `8 xx 1/2 xx 1/2 xx 1`
= 2
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
For any angle θ, state the value of: sin2 θ + cos2 θ
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.