Advertisements
Advertisements
Question
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
Solution
cos 45° = `1/sqrt(2)`
`(cos47^circ)/(sin43^circ) = (cos(90^circ - 43^circ))/(sin43^circ) = (sin43^circ)/(sin43^circ)` = 1 ...[cos (90 − θ) = sin θ]
`(sin72^circ)/(cos18^circ) = (cos(90^circ - 18^circ))/(cos18^circ) = (cos18^circ)/(cos18^circ)` = 1 ...[sin (90 − θ) = cos θ]
`((cos47^circ)/(sin43^circ))^2 + ((sin72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
= `1^2 + 1^2 - 2(1/sqrt(2))^2`
= `1 + 1 - 2(1/2)`
= 2 – 1
= 1
APPEARS IN
RELATED QUESTIONS
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`cos22/sin68`
Evaluate.
sin235° + sin255°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If \[\tan \theta = \frac{3}{4}\] then cos2 θ − sin2 θ =
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
\[\frac{2 \tan 30°}{1 - \tan^2 30°}\] is equal to ______.
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°