Advertisements
Advertisements
Question
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
Solution
cos 60° = `1/sqrt(2)`
`(cos 70^circ)/(sin 20^circ) = (cos(90^circ - 20^circ))/(sin 20^circ) = (sin 20^circ)/(sin 20^circ)` = 1
`(cos 59^circ)/(sin 31^circ) = (cos(90^circ - 31^circ))/(sin 31^circ) = (sin 31^circ)/(sin 31^circ)` = 1
`(cos theta)/(sin(90^circ - theta)) = cos theta/cos theta` = 1
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
= `1 + 1 + 1 - 8(1/2)^2`
= `3 - 8 xx 1/4`
= 3 – 2
= 1
APPEARS IN
RELATED QUESTIONS
If tan 2θ = cot (θ + 6º), where 2θ and θ + 6º are acute angles, find the value of θ
Evaluate cosec 31° − sec 59°
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
If tan θ = cot 37°, then the value of θ is
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.