Advertisements
Advertisements
Question
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.
Options
cos 30°
tan 30°
sin 30°
cot 30°
Solution
If x tan 60° cos 60°= sin 60° cot 60°, then x = tan 30°.
Explanation:
Given, x tan 60° cos 60°= sin 60° cot 60°
x tan 60° cos 60°= sin 60° × `1/tan 60^circ`
Putting values
`x xx sqrt(3) xx 1/2 = sqrt(3)/2 xx 1/sqrt(3)`
`x xx sqrt(3)/2 = 1/2`
x = `1/2 xx 2/sqrt(3)`
x = `1/sqrt(3)`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Evaluate `(tan 26^@)/(cot 64^@)`
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate:
cosec (65° + A) – sec (25° – A)
Use tables to find sine of 34° 42'
Use tables to find cosine of 8° 12’
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Write the value of tan 10° tan 15° tan 75° tan 80°?
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Solve: 2cos2θ + sin θ - 2 = 0.
`tan 47^circ/cot 43^circ` = 1