Advertisements
Advertisements
Question
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
Options
sin 60°
cos 60°
tan 60°
sin 30°
Solution
We have to find the value of the following expression
`(2 tan 3θ°)/(1+ tan^2 30°)`
`(2 tan 30°)/(1+tan ^2 30°)`
=`(2xx1/sqrt3)/(1+(1/sqrt3))`
= `(2/sqrt3)/(1+1/3)`
=`(2/sqrt3)/(4/3)`
Since tan 60°=`sqrt3/2` , since tan 30°= `1/sqrt3`
=`sqrt3/2`
= `sin 60°`
APPEARS IN
RELATED QUESTIONS
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Use tables to find sine of 47° 32'
Prove that:
sec (70° – θ) = cosec (20° + θ)
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
Sin 2B = 2 sin B is true when B is equal to ______.
The value of the expression (cos2 23° – sin2 67°) is positive.