हिंदी

2 Tan 30 ° 1 + Tan 2 30 ° is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to

विकल्प

  • sin 60°

  • cos 60°

  •  tan 60°

  • sin 30°

MCQ

उत्तर

We have to find the value of the following expression 

`(2 tan 3θ°)/(1+ tan^2 30°)`

`(2 tan 30°)/(1+tan ^2 30°)` 

=`(2xx1/sqrt3)/(1+(1/sqrt3))`

= `(2/sqrt3)/(1+1/3)`

=`(2/sqrt3)/(4/3)` 

Since tan 60°=`sqrt3/2`  , since tan 30°= `1/sqrt3` 

=`sqrt3/2`

= `sin 60°` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 26 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If the angle θ = -60° , find the value of sinθ .


`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`


If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.


Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.


solve.
cos240° + cos250°


Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`


Show that : sin 42° sec 48° + cos 42° cosec 48° = 2


Use tables to find the acute angle θ, if the value of cos θ is 0.9574


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0


What is the maximum value of \[\frac{1}{\sec \theta}\] 


If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


The value of tan 1° tan 2° tan 3° ...... tan 89° is 


\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to 


The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is


Prove the following.

tan4θ + tan2θ = sec4θ - sec2θ


Prove that:

\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]


The value of tan 72° tan 18° is


If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×