Advertisements
Advertisements
प्रश्न
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
विकल्प
sin 60°
cos 60°
tan 60°
sin 30°
उत्तर
We have to find the value of the following expression
`(2 tan 3θ°)/(1+ tan^2 30°)`
`(2 tan 30°)/(1+tan ^2 30°)`
=`(2xx1/sqrt3)/(1+(1/sqrt3))`
= `(2/sqrt3)/(1+1/3)`
=`(2/sqrt3)/(4/3)`
Since tan 60°=`sqrt3/2` , since tan 30°= `1/sqrt3`
=`sqrt3/2`
= `sin 60°`
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
If sec 4A = cosec (A− 20°), where 4A is an acute angle, find the value of A.
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
solve.
cos240° + cos250°
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
The value of tan 72° tan 18° is
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.