Advertisements
Advertisements
प्रश्न
Find A, if 0° ≤ A ≤ 90° and 4 sin2 A – 3 = 0
उत्तर
4 sin2 A – 3 = 0
`=> sin^2A = 3/4`
`=> sin A = sqrt(3)/2`
We know `sin 60^circ = sqrt(3)/2`
Hence, A = 60°
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
Write the value of tan 10° tan 15° tan 75° tan 80°?
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°