Advertisements
Advertisements
प्रश्न
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
उत्तर
sin 3A – 1 = 0
`=>` sin 3A = 1
We know sin 90° = 1
∴ 3A = 90°
Hence, A = 30°
APPEARS IN
संबंधित प्रश्न
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Solve.
sin42° sin48° - cos42° cos48°
Use tables to find sine of 10° 20' + 20° 45'
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
The value of tan 10° tan 15° tan 75° tan 80° is
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?