Advertisements
Advertisements
प्रश्न
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
उत्तर
sin A = 1 .....[Given]
But, sin 90° = 1
∴ sin A = sin 90°
∴ A = 90°
`sqrt(2)` AC = BC .....[Given]
∴ `"AC"/"BC" = 1/sqrt(2)` .....(i)
∴ sin B = `"AC"/"BC"` ......(ii) [By definition]
∴ sin B = `1/sqrt(2)` .....[From (i) and (ii)]
But, sin 45° = `1/sqrt(2)`
∴ sin B = sin 45°
∴ B = 45°
sin2A + sin2B + sin2C = 2 .....[Given]
∴ `(1)^2 + (1/sqrt(2))^2 + sin^2"C"` = 2
∴ `1 + 1/2 + sin^2"C"` = 2
∴ sin2C = `2 - 3/2`
∴ sin2C = `1/2`
∴ sin C = `1/sqrt(2)`
But, sin 45° = `1/sqrt(2)`
∴ sin C = sin 45°
∴ C = 45°
∴ ∠A = 90°, ∠B = 45°, ∠C = 45°
APPEARS IN
संबंधित प्रश्न
If tan A = cot B, prove that A + B = 90
Write all the other trigonometric ratios of ∠A in terms of sec A.
Solve.
`cos22/sin68`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
Write the value of tan 10° tan 15° tan 75° tan 80°?
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
The value of tan 10° tan 15° tan 75° tan 80° is
Sin 2A = 2 sin A is true when A =
If \[\cos \theta = \frac{2}{3}\] then 2 sec2 θ + 2 tan2 θ − 7 is equal to
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
2(sin6 θ + cos6 θ) – 3(sin4 θ + cos4 θ) is equal to ______.