Advertisements
Advertisements
प्रश्न
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
विकल्प
\[\frac{1}{2}\]
\[\frac{1}{\sqrt{2}}\]
1
2
उत्तर
We have to evaluate the value. The formula to be used,
`a^3+b^3=(a+b)(a^2+b^2-ab)`
`a^3-b^3=(a-b)(a^2+b^2+ab)`
So,
=`(cos^3 20°-cos 70)/(sin^3 70°-sin^3 20)`
=` ((cos 20°-cos 70)(cos^2 20°+cos^2 70+cos 20° cos 70°))/((sin 70°-sin 20°)(sin^2 70°+sin^2 20°+sin 70° sin 20°))`
Now using the properties of complementary angles,
= `((sin 70°- sin 20°)(sin^2 70°+cos^2 70+cos 20° cos 70°))/((sin 70°-sin 20°)(sin ^2 70°+cos ^2 70°+sin 70° sin 20°))`
=`(1+cos 20° cos 70°)/(1+sin 70° sin 20°)`
=`( 1+ cos20° cos 70°)/(1+cos 20° cos 70°)`
=1
APPEARS IN
संबंधित प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find sine of 34° 42'
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Prove that:
tan (55° - A) - cot (35° + A)
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If A and B are complementary angles, then
Evaluate:
3 cos 80° cosec 10°+ 2 sin 59° sec 31°
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.