Advertisements
Advertisements
प्रश्न
Evaluate:
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
उत्तर
`3 sin72^circ/(cos18^circ) - sec32^circ/(cosec58^circ)`
= `3 sin(90^circ - 18^circ)/(cos18^circ) - sec(90^circ - 58^circ)/(cosec58^circ)`
= `3 cos18^circ/(cos18^circ) - (cosec58^circ)/(cosec58^circ)`
= 3 – 1
= 2
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Evaluate.
sin235° + sin255°
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2