Advertisements
Advertisements
प्रश्न
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
विकल्प
\[\frac{5}{7}\]
\[\frac{3}{7}\]
\[\frac{1}{12}\]
\[\frac{3}{4}\]
उत्तर
Given that:
`tan θ=1/sqrt7`
We are asked to find the value of the following expression
`(cosec^2θ-sec^2θ)/(cosec^2θ+sec^2θ)`
Since `tan θ= "Perpendicular"/"Base"` .
⇒ `"Perpendicular"=1`
⇒ `"Base"= sqrt7`
⇒ `"Hypotenuse"=sqrt(1+7)`
⇒`" Hypotenuse"=sqrt8`
We know that `secθ="Hypotenuse"/"Base" and cosecθ= "Hypotenuse"/"Perpendicular"`
We find:
`(Cosec^2θ-sec^2 θ)/(Cosec^2 +sec^2 θ)`
`((sqrt8/1)^2-(sqrt8/sqrt7)^2)/((sqrt8/1)^2+(sqrt8/sqrt7)^2)`
=(8/1-8/7)/(8/1+8/7)
=`(48/7)/(64/7)`
=`3/4`
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
Evaluate cosec 31° − sec 59°
Solve.
sin42° sin48° - cos42° cos48°
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Evaluate.
`(sin77^@/cos13^@)^2+(cos77^@/sin13^@)-2cos^2 45^@`
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Prove that:
sec (70° – θ) = cosec (20° + θ)
Prove that:
sin (28° + A) = cos (62° – A)
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If A and B are complementary angles, prove that:
`(sinA + sinB)/(sinA - sinB) + (cosB - cosA)/(cosB + cosA) = 2/(2sin^2A - 1)`
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
Sin 2A = 2 sin A is true when A =
In the following figure the value of cos ϕ is
Prove that:
\[\left( \frac{\sin49^\circ}{\cos41^\circ} \right)^2 + \left( \frac{\cos41^\circ}{\sin49^\circ} \right)^2 = 2\]
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
`tan 47^circ/cot 43^circ` = 1
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.