हिंदी

Sin 2a = 2 Sin a is True When a = - Mathematics

Advertisements
Advertisements

प्रश्न

Sin 2A = 2 sin A is true when A =

विकल्प

  •  30°

  • 45°

  •  60°

MCQ

उत्तर

We are given  sin 2A=` 2sin  A. cos.A` 

So 

⇒` 2 sin A. cos A=2 sin A` 

⇒` 2 sin A. cos A= 2 sin A` 

⇒ `cos A=1` 

⇒ `cos A= cos 0°` 

`As  A= 0°` 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.5 | Q 28 | पृष्ठ ५८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A


Prove the following trigonometric identities.

`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`


if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`


Evaluate:

`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`


Find the value of angle A, where 0° ≤ A ≤ 90°.

cos (90° – A) . sec 77° = 1


Prove that:

`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`


Use trigonometrical tables to find tangent of 37°


Use tables to find the acute angle θ, if the value of tan θ is 0.4741


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


If angles A, B, C to a ∆ABC from an increasing AP, then sin B = 


Express the following in term of angles between 0° and 45° :

cosec 68° + cot 72°


Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`


Solve: 2cos2θ + sin θ - 2 = 0.


Find the value of the following:

`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`


Find the value of the following:

tan 15° tan 30° tan 45° tan 60° tan 75°


Find the value of the following:

sin 21° 21′


If x and y are complementary angles, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×