Advertisements
Advertisements
प्रश्न
Sin 2A = 2 sin A is true when A =
विकल्प
0°
30°
45°
60°
उत्तर
We are given sin 2A=` 2sin A. cos.A`
So
⇒` 2 sin A. cos A=2 sin A`
⇒` 2 sin A. cos A= 2 sin A`
⇒ `cos A=1`
⇒ `cos A= cos 0°`
`As A= 0°`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
if `tan theta = 3/4`, find the value of `(1 - cos theta)/(1 +cos theta)`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
Solve: 2cos2θ + sin θ - 2 = 0.
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
Find the value of the following:
sin 21° 21′
If x and y are complementary angles, then ______.