Advertisements
Advertisements
प्रश्न
Find the value of the following:
sin 21° 21′
उत्तर
0' | 6' | 12' | 18' | 24' | 30' | 36' | 42' | 48' | 54' | Mean difference | ||||||||
0.0° | 0.1° | 0.2° | 0.3° | 0.4° | 0.5° | 0.6° | 0.7° | 0.8° | 0.9° | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
49 | 0.7547 |
From the natural cosines table
sin 21° 18′ = 0.3633
Mean difference 3' = 8
sin 21° 18′ = 0.3641
APPEARS IN
संबंधित प्रश्न
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Prove the following trigonometric identities.
(secθ + cosθ) (secθ − cosθ) = tan2θ + sin2θ
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Use tables to find sine of 21°
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
Write the acute angle θ satisfying \[\cos B = \frac{3}{5}\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ