Advertisements
Advertisements
प्रश्न
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
विकल्प
\[\frac{7}{8}\]
\[\frac{8}{7}\]
\[\frac{7}{4}\]
\[\frac{64}{49}\]
उत्तर
Given that: `tan^2 θ=8/7` and θis an acute angle
We have to find the following expression `((1+sinθ)(1-sin θ))/((1+cos θ)(1-cos θ))`
Since
`tan^2θ=8/7`
`tan θ=sqrt(8/7)`
`tan θ=sqrt8/sqrt7`
Since `tan θ="perpendiular"/"Base"`
⇒ `"Perpendicular"=sqrt8`
⇒ `"Base"=sqrt7`
⇒ `"Hypotenuse"
= sqrt(8+7)`
⇒ `"Hypotenuse"=sqrt15`
We know that `sinθ= "Perpendicular"/"Hypotenuse" and cos θ="Base"/"Hypotenuse"`
We find:
`((1+sinθ )(1-sin θ))/((1+cos θ)(1-cosθ))`
=`((1+sqrt8/sqrt15)(1-sqrt8/sqrt15))/((1+sqrt7/sqrt15)(1-sqrt7/sqrt15))`
=`((1-8/15))/((1-7/15))`
=`(7/15)/(8/15)`
=`7/8`
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Without using trigonometric tables, evaluate the following:
`( i)\frac{\cos37^\text{o}}{\sin53^\text{o}}\text{ }(ii)\frac{\sin41^\text{o}}{\cos 49^\text{o}}(iii)\frac{\sin30^\text{o}17'}{\cos59^\text{o}\43'}`
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
Solve.
`tan47/cot43`
Solve.
`sec75/(cosec15)`
solve.
sec2 18° - cot2 72°
Evaluate:
tan(55° - A) - cot(35° + A)
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
If ∆ABC is right angled at C, then the value of cos (A + B) is ______.
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Express the following in term of angles between 0° and 45° :
cosec 68° + cot 72°
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
Sin 2B = 2 sin B is true when B is equal to ______.