Advertisements
Advertisements
प्रश्न
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
उत्तर
We have:
`A+B=90°`
`Cos B=3/5`
`A+B=90°`
⇒ `A=90-B`
⇒`Sin A=sin (90-B)`
⇒` Sin A= Cos B`
⇒ `sin A=3/5 [sin(90°-B)= cos B ]`
Hence the value of sin A is `3/5`
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
solve.
cos240° + cos250°
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Use tables to find cosine of 26° 32’
Use tables to find cosine of 9° 23’ + 15° 54’
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
Write the maximum and minimum values of sin θ.
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Sin 2A = 2 sin A is true when A =
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Evaluate: `(cos55°)/(sin 35°) + (cot 35°)/(tan 55°)`
The value of tan 72° tan 18° is
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
If x and y are complementary angles, then ______.