Advertisements
Advertisements
प्रश्न
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
उत्तर
It is given that `tan θ=4/5` .
We have to find \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
\[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
= `1-( sinθ/cos θ)/(1+sinθ/cos θ)` [Dividing both numberator and denominator by cos θ]
=`(1-tanθ)/(1+ tan θ)`
= `(1-4/5)/(1+4/5)`
=`1/9`
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Evaluate.
cos225° + cos265° - tan245°
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
For triangle ABC, show that : `tan (B + C)/2 = cot A/2`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Use tables to find sine of 21°
Use tables to find cosine of 26° 32’
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
Sin 2A = 2 sin A is true when A =
In the following figure the value of cos ϕ is
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.