Advertisements
Advertisements
प्रश्न
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
उत्तर
It is given that `tan θ=4/5` .
We have to find \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
\[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
= `1-( sinθ/cos θ)/(1+sinθ/cos θ)` [Dividing both numberator and denominator by cos θ]
=`(1-tanθ)/(1+ tan θ)`
= `(1-4/5)/(1+4/5)`
=`1/9`
APPEARS IN
संबंधित प्रश्न
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
`cos55/sin35+cot35/tan55`
solve.
sec2 18° - cot2 72°
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Use tables to find cosine of 2° 4’
Use tables to find the acute angle θ, if the value of sin θ is 0.3827
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
Evaluate: cos2 25° - sin2 65° - tan2 45°
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
`(sin 75^circ)/(cos 15^circ)` = ?
If sin A = `3/5` then show that 4 tan A + 3 sin A = 6 cos A
`tan 47^circ/cot 43^circ` = 1