Advertisements
Advertisements
प्रश्न
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
उत्तर
`sin26^circ/sec64^circ + cos26^circ/(cosec64^circ)`
= `sin26^circ/(sec(90^circ - 26^circ)) + cos26^circ/(cosec(90^circ - 26^circ))`
= `sin26^circ/(cosec26^circ) + cos26^circ/sec26^circ`
= sin226° + cos226°
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate `(tan 26^@)/(cot 64^@)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Prove that:
sin (28° + A) = cos (62° – A)
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.