Advertisements
Advertisements
प्रश्न
Evaluate `(tan 26^@)/(cot 64^@)`
उत्तर
`(tan 26^@)/(cot 64^@) = tan (90^@ - 64^@)/(cot 64^@)`
`=(cot 64^@)/(cot 64^@) = 1`
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
If tan A = cot B, prove that A + B = 90
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Solve.
sin42° sin48° - cos42° cos48°
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Use tables to find sine of 47° 32'
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
If \[\tan \theta = \frac{4}{5}\] find the value of \[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}\]
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)