Advertisements
Advertisements
प्रश्न
Evaluate `(tan 26^@)/(cot 64^@)`
उत्तर
`(tan 26^@)/(cot 64^@) = tan (90^@ - 64^@)/(cot 64^@)`
`=(cot 64^@)/(cot 64^@) = 1`
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
If the angle θ = -60° , find the value of sinθ .
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
tan(55° - A) - cot(35° + A)
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Find A, if 0° ≤ A ≤ 90° and sin 3A – 1 = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that cos 3 A = 4 cos3 A – 3 cos A
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
If 0° < A < 90°; find A, if `sinA/(secA - 1) + sinA/(secA + 1) = 2`
If \[\frac{160}{3}\] \[\tan \theta = \frac{a}{b}, \text{ then } \frac{a \sin \theta + b \cos \theta}{a \sin \theta - b \cos \theta}\]
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
The value of (tan1° tan2° tan3° ... tan89°) is ______.
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)