Advertisements
Advertisements
प्रश्न
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)
उत्तर
L.H.S = tan θ + tan (90° – θ) ...[∵ tan (90° – θ) = cot θ]
= tan θ + cot θ
= `sinθ/cosθ + cosθ/sinθ`
= `(sin^2 theta + cos^2 theta)/(sin theta cos theta)` ...`[∵ tan theta = sintheta/costheta "and" cot theta = costheta/sintheta]`
= `1/(sin theta cos theta)` ...[∵ sin2θ + cos2θ = 1]
= sec θ cosec θ ...`[∵ sec theta = 1/costheta "and" cos theta = 1/sin theta]`
= sec θ sec (90° – θ) ...[∵ sec (90° – θ) = cosec θ]
= R.H.S
APPEARS IN
संबंधित प्रश्न
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Evaluate:
tan(55° - A) - cot(35° + A)
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Prove that:
sec (70° – θ) = cosec (20° + θ)
Prove that:
`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
The value of
In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`