हिंदी

Prove the following: tan θ + tan (90° – θ) = sec θ sec (90° – θ) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)

योग

उत्तर

L.H.S = tan θ + tan (90° – θ)  ...[∵ tan (90° – θ) = cot θ]

= tan θ + cot θ

= `sinθ/cosθ + cosθ/sinθ`

= `(sin^2 theta + cos^2 theta)/(sin theta cos theta)`  ...`[∵ tan theta = sintheta/costheta "and" cot theta = costheta/sintheta]`

= `1/(sin theta cos theta)`   ...[∵ sin2θ + cos2θ = 1]

= sec θ cosec θ   ...`[∵ sec theta = 1/costheta "and" cos theta = 1/sin theta]`

= sec θ sec (90° – θ)  ...[∵ sec (90° – θ) = cosec θ] 

= R.H.S 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 7 | पृष्ठ ९५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`

 


if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)` 


if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`


if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`


Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`


Express the following in terms of angles between 0° and 45°:

cos74° + sec67°


Evaluate:

tan(55° - A) - cot(35° + A)


A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`


Use tables to find the acute angle θ, if the value of tan θ is 0.2419


Prove that:

sec (70° – θ) = cosec (20° + θ)


Prove that:

`1/(1 + cos(90^@ - A)) + 1/(1 - cos(90^@ - A)) = 2cosec^2(90^@ - A)`


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A


Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)


If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


In the following Figure. AD = 4 cm, BD = 3 cm and CB = 12 cm, find the cot θ.

 

 


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


Find the value of the following:

`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×