Advertisements
Advertisements
प्रश्न
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
उत्तर
`sintheta=7/25`
we know `sin theta="Opposite"/"Hypotunes"=p/h`
`therefore p/h=7/25` [∵ Opposite = Perpendicular = p]
p=7k, h=25k
Let the adjacent (base) side be b.
Thus `b=sqrt((25k)^2-(7k)^2)=24k`
`costheta=(24k)/(25k)=24/25`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate the following:
`(i) sin^2 25º + sin^2 65º `
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Solve.
sin15° cos75° + cos15° sin75°
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Use tables to find cosine of 8° 12’
Prove that:
sin (28° + A) = cos (62° – A)
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
If 0° < A < 90°; find A, if `(cos A )/(1 - sin A) + (cos A)/(1 + sin A) = 4`
Find the sine ratio of θ in standard position whose terminal arm passes through (3, 4)
The value of
tan 5° ✕ tan 30° ✕ 4 tan 85° is equal to
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
Without using trigonometric tables, prove that:
sec70° sin20° + cos20° cosec70° = 2
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
A triangle ABC is right-angled at B; find the value of `(sec "A". sin "C" - tan "A". tan "C")/sin "B"`.
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.
If x tan 60° cos 60°= sin 60° cot 60°, then x = ______.